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ABSTRACT

The problem of predicting the behavior of large-scale disturbances in the mean horizontal flow of the
earth’s atmosphere, which is directly connected with the problem of predicting the day-to-day changes of
surface weather conditions, has been studied from the standpoint of formulating and solving the hydro-
dynamical equations which govern the flow. Owing to the difficulty of solving the complete system of equa-
tions (whose very generality implies the existence of several irrelevant, but possible, types of solutions), it
is convenient to develop a ‘scale theory™ whereby the various poesible types of atmospheric motion, each
corresponding to a distinct type of solution, can be distinguished and classified. As it tums out, each type of
motion is characterized by its phase speed and frequency. The largescale disturbances, for example, are
distinguished from all other types of motion by tl - fact that their characteristic phase speed is much less than
that of sound waves and of high-speed internal gravity waves.

By explicitly introducing this information into a mean vorticity equation for adiabatic flow, it is then
possible to reduce the system to a single equation from which the extraneous solutions have been excluded
and which is otherwise free of major difficulties. The resulting “prognostic equation,” which governs the
large-scale motions of a fictitious two-dimensional fluid whose velocity is a vertically integrated mean value
of the horizontal component of velocity in the real three-dimensional atmosphere, forms the bacis for a
method of numerical prediction.

An iterative scheme, based on the solutions of a succession of linear equations, has been proposed for
solving the nonlinear prognostic equation. In the course of developing this method, the complete solutions
for forced oscillations induced by irregular terrain and for linear transient disturbances have been presented
in readily computable form, in terms of known initial values and the appropriate Green's functions. Finally,
the prediction formulas for large-scale transient disturbances have been applied to observed initial data,

with generally favorable results.



FOREWORD

This is the first of two reports on recent researches in the problem of numerical weather prediction cur-
rently being carried out at the Atmospheric Analysis Laboratory of the Geophysical Research Division, Air
Force Cambridge Research Center. This report deals primarily with the theorctical aepects of the problem
and represents the author’s own efforts to shed a little light on this difficult subject. The second report, to
be published in the near future, after completion of the present phase of the program, will summarize the
results of several rather laborious attempts to test the theory. The latter work, because of its magnitude
and many ramifications, is necessarily a group effort and will be reported accordingly. It will include a
descriptive study of the conservation and generation of mean horizontal circulation, as well as a full account
of our attempts to apply the theory to the problem of predicting the mean horizontal flow.

The further one explores the difficulties of the special problem of weather prediction, the more evident is
the necessity of discussing genceral questions of method, predictability and ultimate aims. A somewhat het-
erodox approach to the problem cannot, in fact, be justified without reviewing the relative merits and dis-
advantages of several possible methods. The first and, to some extent, the second sections of this report
have, therefore, degenerated into a sort of essay on meteorological manners and morals. It is not expected
that every reader will be interested in those portions.  Those who do read them, however, should do so with
the realization that they are tentative, exploratory and essentially speculative. Readers concerned only with
practical applications might do well to skip to the fourth, fifth, seventh and eighth sections, tuming back to
intervening sections for definitions.

Throughout this report there appear frequent references to the recent papers of J. G. Charney of the
Institute for Advanced Study whose work, perhaps more than any other, has clarified the fundamental
probiems of numerical weather prediction. His contributions to this field are so numerous that it would be
difficult even to ackno. ledge them all, let alone elaborate on them. It is, therefore, appropriate to recognize
a general debt of grautude to Dr. Chamey who, through many lively discuesions, has influenced the author’s
viewpoint and attitude toward the problem. Special thanks are due to Mr. Louis Berkofsky and Miss
Agnes Galligan for carrying out the laborious and unrewarding task of tabulating the Green's function for

the two-dimensional form of the linearized vorticity equation.
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Symbol

Q

M(x, y)
n

Ni(x, y)

LIST OF SYMBOLS*

Meaning or Definition

arbitrary amplitude factor

Fourier sine coefficient

characteristic amplitude of ¢-disturbance
V' =AYV

f’ = Ar?

Fourier cosine coefficient

phase speed, characteristic phase speed
speed of surface gravity waves or of internal gravity waves
speed of modified gravity waves
Newtonian speed of sound at sea level
Laplacian speed of sound

a circle in the (x, y) plane

Pe
E =/J RT dp

characteristic double frequency

gravitational acceleration

a Green’s function

height of terrain above mean sea level, elevation of sea surface
depth of an ocean, height of a density discontinuity

His,y) = Lih(x, )}

H(x,y) = V¥ — u?z

integer index

a Green’s function

Bessel function of order n, first kind, imaginary argument
integer index

Jacobian determinant or a kernel function

Bessel function of order n, first kind, real argument

kK =m?+s°

vertically-directed unit vector

a kernel function

Bessel function of order n, second kind, imaginary argument
coordinate along a path of integration

characteristic half-wavelength, interval of Fourier expansion
an integer or m? = g U!

M(x,y) = —u?U oh/dx

an integer, or coordinate normal to a path of integration

a quantity at the ith stage of iteration

* Some symbols carry several different meanings.

of the symbols in context.

11

In general, such ambiguities have been minimized by defining each meaning
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LIST OF SYMBOLS (Continued)

Meaning or Definition

atmospheric pressure

a path of integration

an integer

P=(x=-8"+(y—-n?

gas constant, or radius of a circle

variable of the Laplace transform

an annular region of integration

clapsed time, or a dummy variable of integration

absolute temperature, characteristic half-period, or the Green's function for linear transient
disturbances

eastward horizontal component of velocity, or u = m(y — n)
u=U+ud

mean value of i integrated over a horizontal area

northward horizontal component of velocity

Vo=Vl
horizontal component of vector velocity
V=V+V

vertical component of velocity

locally Cartesian coordinate directed toward east

same as above relative to a moving origin

locally Cartesian coordinate directed toward north

Bessel function of order n, second kind, real argument

height above mean sea level, height of an isobaric surface. height of an isentropic surface, a
dummy variable of integration, or 2 =14 u?

height disturbance due to linear transient disturbances

height disturbance due to irregular terrain

height disturbanee due to nonlinear effects

area average of 5300-millibar contour height

Z=t+rorZ ="z
Z=7+7

wave number in x-direction, or o = s’
B = ax dv

B* =B+ 1l

vy = CpC,, -

a circle in the (xv, v) plane

finite difference

a small constant

vertical com ponent of relative vorticity

a dummy variable of integration corresponding to v

potential temperature, p'p~ ', or an angular coordinate
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LIST OF SYMBOLS (Continued)

Meaning or Definition

x =y ' or x = sin }6
Coriolis parameter
“2 — )‘2(."-2 V()V—l
v o=yt 4 (8*/2s)?
arbitrary phase angle, or a dummy variable of integration corresponding to x
density of air, or radius of a circle
o? - 8*rt _
r =14 A.A,. or a dummy variable of integration
angle between V and some fixed horizontal line
representative dependent variable, dummy variable of integration
the Green's function for forced oscillations
stream function for mean flow

Used systematically, subscripts will generally denote conditions at some particular level or
along some surface, or will indicate the manner in which an operation is to be carried out, as
follows:
conditions along an isentropic surfacc at height d
conditions at the ground surface
differentiation with p held fixed
differentiation with z held fixed
differentiation with 6 held fixed
conditions at mean sea level, or at ¢t = 0
conditions below and above a density discontinuity

Special Operators
horizontal component of vector derivative
Laplace transformation
Inverse Laplace transformation LL™'{¢} = ¢
convolution operator (Faltung integral)
P
( )dp

(—)=[M_l A
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NOTES ON THE THEORY OF LARGE-SCALE
DISTURBANCES IN ATMOSPHERIC FLOW
WITH APPLICATIONS TO NUMERICAL
WEATHER PREDICTION

1.00 INTRODUCTION AND GENERAL REMARKS

THE PREDICTION PROBLEM

1.01.  This paper is an attempt to deal with certain limited aspects of the problem of numerical weather
prediction—a problem which, in its raost general formulation, is roughly equivalent to the “forecasting prob.
lem’ proposed by V. Bjerknes (1919) in his cel-brated work on physical hvdrodynamics. As far as ultimate
aims are concerned, this problem is not essentially different from the classical conception of the general pre-
diction problem. The present approach to it, however, departs far enough from the classical theory to
warrant a fairly complete discusgion of the nature of the problem itself.

1.02.  In order to motivate the choice of special problems to be studied here and to clarify its nature
and extent, the scope of this work will be narrowed as the difficulties of the more general problem become
apparent.  Fimst, by analyzing those difficulties and reviewing the li:nited means at our disposal to overcome
them, we shall attempt to state a problem which is neither so special that it is trivial nor so general that it
cannot be solved.  Second, although it is not one of the purposes of this paper to present a comprehensive
critique of method, it is at least necessary to consider the relative merits and disadvantages of several possible
lines of attack on the problem. Finally, it is not only essential to state the problem as a real and sensible
question, but to specify what shall be taken as a satisfactory solution.

1.03.  The general statement of the prediction problem, taken as it stands, is so inclusive that its com-
plete solution must deseribe all the aspects of behavior which any fluid can possibly exhibit.  To mention
only a few, it would include convection, aeradynamic and other boundary effects, the propagation of sound
and gravity waves, as well as those phenomena usually considered to be more typically meteorological.
The overwhelming difficulties of the general problem are immediately clear if it is only realized that it em-
braces several classes of problems which are still unsolved, although they are very special and perfectly well
defined.  In its general form, therefore, the prediction problem cannot be completely solved.

1.0+, On the other hand, it is not obviously necessary to solve the problem in its most general form.
Since the aim of the meteorologist is confined to predicting those aspeets of the atmosphere which are pecul-
iarly meteorological in character, some of the difficulties of the general problem are only apparent. It is
probably safe to say that the existence of round waves, for example, has little or nothing to do with the
course of meteorological events, and that other difficult aspect: of the general behavior of the atmoephere are
likewise not essential to the weather producing mechanism.  The firt concern, therefore, is to rephrase the
prediction problem, deliberately introducing those specializations that make it explicitly meteorological.
We shall, in fact, adopt the point of view that the fundamental problem of weather prediction has not been
stated as a meaningful question unless the terms of the problem distinguish it from problems of acoustics, the

acrodynamies of supersonic flow and other irrelevant questions implicit in the general problem.
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1.05. The most obvious and straightforward way in which the prediction problem might be specialized
is to examine the inner structure of the problem in complete detail, in the hope of finding some inherently
natural basis for breaking it down into less inclusive (and correspondingly less formidable) component
problems. Such a program as this, however, would require an exhaustive catalogue of all possible modes of
behavior, some of which might be excluded from the very outset. Morcover, the selection of any special
problem must be based, at least partially, on economic considerations which are external to the problems
themselves. It appears logical and natural, therefore, to begin with a discussion of external constraints on
the prediction problem, emphasizing those which have acted to specialize the problem in the past.

ECONOMIC BACKGROUND OF THE PROBLEM

1.06. The general problem of weather prediction is far from new. In one form or another and for
various reasons— possibly the grandness of the scale of events, the obvious economic value of successful
predictions, the layman’s natural and sometimes rather alarming preoccupation with the weather, or perhape
the sheer appeal of a difficult problem—it has held the attention of meteorologists, mathematicians, phys-
icists, professional forecasters and amateur weather prophets alike for some centurie. The desirability of
introducing meteoroiogical factors into agricultural, commercial and industrial planning is evident and has
long been recognized. As an indication of the growing public demand for meteorological information, it is
sufficient to mention that almost every national government maintains some sort of weather forecasting
service as an integral part of its executive body.

1.07. Despite the fairly obvious advantages of cfficiency to be gained by simply knowing what to plan
for, the operational phases of weather prediction have not received material support in proportion to the
widespread interest in accurate estimates of meteorological factors. There were probably very sound
economic and psychological reasons for this lack of support in the past. First, aside from the admitted un-
reliability of weather predictions and the enormous expense of maintaining an adequate network of observing
posts, the economic effects of meteorological factors were not very well understood and accordingly could not
be weighted quantitatively. Second, in those few areas of economic activity where it was possible to assign
a calculable weight to the meteorological factor, it was only sufficient to affect over-all efficiency and was not
in itself decisive in determining total success or total failure.

1.08. During recent years the economic value of accurate weather prediction and its importance to
human safety have been heightened by the rapidly increasing scale of commercial and m' ‘itary aircraft opera-
tions and by the recognition and introduction of meteorological factors in military planning. These, of
course, have been selected deliberately as examples of human activity whose success or failure—not merely
their efficiency—is affected decisively by the weather. There are urgent social, economic and geopolitical
reasons for wishing to know the future state of the atmosphere and a corresponding increase in support,
both material and moral, has been given to improving our knowledge of it. The civil and military weather
services of the government have together built vp and maintained a dense network of observing stations,
which produces, as a by-product of its routine activities, an invaluable mass of measurements for study and
rescarch. At the same time, the military services have sponsored an extensive program of research in the
fundamental problem of weather prediction. It is quite fair to say that more than half of allmeteorological
research in this country bears directly on the prediction problem and has as its ultimate objective the suc-
cessful prediction of weather.

1.09. Itis not very surprising that the course of meteorology as a science and weather forecasting as a

profession have been influenced strongly by so extensive a background of economnics.  As in all other areas of
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economic endeavor, the production of the forecaster—the content of the information he provides and the
form in which he presents it—is determined directly by consumer demand. Less directly. perhaps, but to
an equally great extent, commercial interests and military requirements also influence the forecaster’s choice
of variables to be measured, his technique of analysis, and basic methods of prediction. The over-all effect
of these constraints has been to confine the outlook of the practicing meteorologist to those few fields of
problems which are important from the standpoint of operations, and to methods which are optimum from
the standpoints of reliability, initial expense of development and continuing expense of application.

1.10. To cite an example, the viewpoint of the forecaster underwent a pronounced change immediately
following the development of "‘all weather flying™ equipment. As the need for meteorological information
gradually shifted from factors that affect airport control to those that affect air navigation, the forecaster
came to concentrate more and more on the configuration of flow in the upper troposphere and less on the
tangible, moist wspects of weather at lower levels.  Confronted with the problem of predicting winds at high
operating altitudes, he has been forced to make maximum use of data from radio-balloon ascents by devising
new techniques of analysis and representation. Similarly, he has found it convenient to introduce entirely
new concepts to deal with the special problem of high altitude wind prediction.

1.11. Thoee same economic factors have also exerted a powerful influence on the development of basic
systems of meteorological measurement. It is doubtful that measurements on the vast scale of the atmos-
phere would ever have been undertaken out of pure scientific curiosity, without some strong external motive
for doing so. In the instance mentioned above, the increased demand for accurate wind predictions alone
lent considerable impetus to the expansion of the network of meteorological observations and to its vertical
extension by a system of radio-balloon sour:dings. It is evident that the economic value of meteorological
information will inevitably control the density and geographical extent of an observing network whose ex-
pense, because of its very size, is a major consideration. To a somewhat lesser extent, that constraint has
also acted to focus attention on certain aspects of the corresponding scientific problem and to fix the problem
of weather prediction within definite limits of feasibility.

1.12. In discussing the manner in which external constraints serve to specialize the prediction problem,
it might be profitable to examine the viewpoint of the practicing weather forecaster, who is continually sub-
jected to those constraints and who presumably maintains his position by exercising his knowledge of the
problem. Since the skill of the forecaster is essentially positive, it is reasonably safe to accept his estimate
of what is important to the problem, if not his methods and results, as somewhere near correct. The fore-
caster might even be regarded as the arbiter of meteorological opinion in matters where common experience

and opinion are moet appropriate.

CONSTRAINT OF OBSERVABILITY

1.13.  The forecaster’s viewpoint is strongly colored by his realization that the complete state of the
atmosphere is neither observed nor observable, for there is only a finite amount of time and effort to be
expended in observing it, even if it were otherwise feasible to do so. The fact is that purely economic con-
straints set a low upper limit on the density and geographical extent of the observation network.  This alone
has a marked effect on the foreca.ter’s choice of variables to be predicted. Judging from his well.known
and often deplored tendency to state his predictions in very general terms, the forecaster is trying to predict
variables which are “representative’ of an interval of time or a region of space, rather than the values that
will actually occur at each instant and at every point. The forecaster is simply recognizing that it is futile

and illusory to try to predict the state of the atmosphere in greater detail than the resolving power with which
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it can be observed. Moreover, although the forecaster himself rarely goes about it in such an objective fash-
ion, his attitude may be interpreted as an indication that one should predict some sort of mean values of the
state variables, in the sense that they are representative of conditions over a finite interval of time or a finite
region of space.

1.14.  Looking at the problem from yet another point of view—from the standpoint of mathematical
physics—the original statement of the prediction problem is little more than a testament of faith that a
solution exists. Apart from the fact that it has no special context and contains no hint as to what aspects of
the atmosphere are relevant, the general problem is framed in terms which have no counterpart in observable
reality. The question becomes meaningful (and the differences of several possible viewpoints are partially
reconciled) if the problem is restricted to that of predicting the mean local state of the atmosphere, inte-
grated over intersecting volumes whose linear dimensions are several times greater than the distance between
adjacent observation points. No matter which view of the general problem one takes, and however hidden
this assumption may be, it must be assumed that such mean values display some sort of statistical stability.
That is to say, the mean values of any two finite random selections of variables from the infinite aggregate
must not differ by more than some small fraction of the total variability. Under these conditions, the true
mean values can be approximated by finite sums.  If this condition is not met, our present ohservations are
inadequate to describe the state of the atmosphere at all, and the prediction problem is hopeless irom any
standpoint.

1.15. At least tw.ce before in the history of the physical sciences, we have been confronted with similar
difficultics, i.e., our inability to observe the complete state of a system and to predict its state to the last
detail. The cases in point are the kinetic theory of gases and the Reynolds theory of turbulence. In each of
these instances, the physicist has resorted to the purely mathematical de vice of deriving principles that apply
to certain statistics of a state, from the physical laws that presumably describe it in complete detail.  In the
former case, owing to the impossibility of observing the position and velocity of every molecule of a fluid,
Maxwell extracted from the Newtonian equations of motion for each individual molecule a set of partial
differential equations which describe the behavior of certain statistical properties of an aggregate of molecules,
for example, pressure, temperature, density and mean velocity.  If the statistics of the aggregate display
sufficient stability, then it is permissible to think of the hydrodynamical equations as governing the state of
a fictitious continuous medium.  For similar reasons, Revnolds found it convenient to integrate the Navier-
Stokes equations in such a way that they refer to integrated or mean values of the onginal dependent varia-
bles. Two points should be made clear.  First, these techniques are applicable if and only if the statistics
of the state are stable in the sense outlined earlier.  Second, it is important to realize that the general method
of reframing a problem in terms of statistical functions of the state variables is simply an expedient to make
up for our inability to observe the state in complete detail.

1.16.  Since the meteorologist 1s now confronted with precisely the same sort of difficulty, it appears
reasonable to adopt similar methods for expressing the fundamental laws of hydrodynamics in terms of
variables which are averaged over a large space aggregate of nonobservables, and which are therefore repre.
sentative of the observed statistics of the aggregate.  In fact, one might hazard the guess that one of the
next important advances of meteorological science will be brought about by introducing statistical concepts
into the hydrodynamical theory of large-scale atmospheric motions.  The desirability of such a procedure

will be discussed further in Section 8.00.
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REPRESENTATIVE VARIABLES

1.17.  Returning to the viewpoint of the weather forecaster, it is also significant that he does not find
it necessary to know all the variables which characterize the initial state of the atmosphere, in order to predict
its mean state. [f his main concern is to predict the general configuration of the pressure distnbution, for
example, he usually considers only the initial values of pressure, independent of all other state variables.
Such considerations are usually sufficient to give a rough idea of the mean state of the atmosphere, because
the mean wind and temperature are approximately related to the pressure distribution through semi-empirical
rules, such as the so-called geostrophic and hydrostatic relations.

1.18.  There are sound reasons which underlie—or at least justify—the {orecaster’s selection of the pres-
sure distribution as the best single indicator of the mean state of the atinosphere. In the first place, of all
the variables that are normally conceded to characterize the physical state of the atmosphere, pressure can
be measured most accurately. It should be noted also that the composition of the atmosphere, aside from
determining the gross temperature distribution and mean circulation, iv important only if there is continual
change of phase, with a resulting capture or release of energy. Although changes of phase are undoubtedly
operative in modifying the state of the atmosphere, it is equally certain that they are not an essential part of
the mechanism by which they themselves are originally generated. First of all, it is necessary to inquire how
the initial disturbances, which must precede changes of phase, arc leveloj *d and maintained. It is probably
safe to say that the kinematic and thermodynamic history of the true atmosphere, with the previously stated
qualifications, will not differ radically from that of a fictitious atmosphere which is initially identical in all
other respects, but absolutely devoid of moisture.  And granting that the atmosphere does contain moisture,
it is reasonable to assume that the circulation of the atmosphere is much more effective in producing changes
of phase than vice versa.

1.19. It remains to decide which of the ‘inematic and thermodynamic variables is most representative
of the meteorological state of the atmosphere.  Temperature and density can be eliminated from considera-
tion, because it is inherent in the present system of measurement that they are related directly to the pressure
distribution through the equation of state and the condition for hydrostatic cquilibrium. The question is
thus reduced to choosing between pressure and the kinematic variables. The fact that further limits the
choice is this: The variations of pressure associated with disturbances of various scales generally decrease in
magnitude with decreasing scale, whereas the corresponding variations of wind speed are of the same general
order of magnitude, independent of scale.  This implies that pressure measurements are the least sensitive
to disturbances whose scale is less than the mesh size of the observation network, and most representative of
conditions over a region whose linear dimension is greater than the mesh size. It is not very surprising,
therefore, that the forecaster habitually thinks of the atmosphere in terms of the pressure distribution.  Of
all the variables that describe the physical state of the atmosphere, pressure is the most representative of
conditions which extend over scales equal to or greater than the distance between adjacent observation
stations.

1.20. Up to this point, the several possible directions of specialization have been considered without
regard to the methods by which the prediction problem might be solved.  The next concern is to discuse the
advantages and applicability of several methods that have been tried in the past.  Before going on to a dis-
cussion of method, however, it is appropriate to summarize the previous discussion by restating the problem

in less general terms.  The remainder of this paper will deal almost exclusively with the problem of predicting
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atmospheric pressure. Moreover, because limitations on observability also limit the detail in which one can
predict the state of the atmosphere, further discussion will be restricted to pressure disturbances whose

characteristic scale is several times greater than the distance between adjacent observing stations.

THE BASIC METHODS OF PREDICTION

1.21.  Considered for the number of methods that have been applied to it, the problem of weather
prediction is one of the most remarkable of the fundamental problems of meteorology. The spectrum of
methods ranges from the most powerful techniques of mathematical physics to the crudest and most sub-
jective kind of empiricism. That they display such great variety is not very surprising. since it is natural
that methods of prediction should evolve with the science.  But it is certainly curious that almost all those
methods are still in use. It is relevant, therefore, to review some of the methods in current use, synthesizing
from them a few basic methuds which are common to all.

1.22. The methods that have previously been upplied to the prediction problem are, in essence, varia-
tions and combinations of two basically different wchniques. These are the methods of mathematical
physics and the statistical method. It should be realized that there is no real and clear-cut distinction
between these methods, considered as equally legitimate variants of the scientific method, and that, in that
sense, they both tend to the same ultimate end.  For the limited purpose of this discussion, however, it is
still possible to draw valid distinctions between two essentially different routes of approach, whether or not
they eventually lead to a common end.

1.23. The method of mathematical physics, as discussed here, consists primarily in the suitable mathe-
matical formulation of certain fundamental physical principles, which govern the behavior of any fluid—
the laws of conservation of momentum, energy, mass and composition, along with an equation of state.
It goes without saying, unless the question is entircly trivial, that those laws are actually known and that the
simultaneous system of differential equations embodying those principles is capable of solution.  Subject to
appropriate boundary and initial corditions, the solution of this mathematical problem inay be regarded as a
prediction of the future state of the atmosphere.

1.24. The statistical method, on the other hand, seeks to establish a direct correspondence between the
state of the system at some arbitrarily chosen initial moment and its state at any time in the future, simply
by analyzing the past history of the atmosphere to find out what has happened before in similar circum.-
siances. To put it a little more precisely, this method offers a means of cstimating the probability that any
of a number of mutually exclusive events will occur in the future. The postulate which makes the method
operative is that those probabilities may be identified with the observed frequencies of those same events in
the past, following combinations of variates identical (or similar) to that which characterizes the given initial
state.

1.25. To illustrate the way in which these two basic methods, under various guises and with varying
degrees of objectivity, have been applied to the prediction problem, it is simplest to examine an accepted and
fairly typical pattern of meteorol. gical research.  This, for lack of a better name, will be called the synoptic
method. As its name might indicate, one of its principal aims is to present a concise description or synopsis
of the state of the atmosphere at a given instant—so concise that certain selected aspects can be apprehended
immediately and as a whole. In this respect, the synoptic method is essentially descriptive, and necessary
from the standpoint of discovering which aspects of the atmosphere are relevant to the problem of weather
prediction. In the same sense, it is not a prediction technique at all, but a method of representing the state

of the atmosphere, usually graphically, according to certain preconceptions of what is especiclly important.
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By its enforced association with the prediction problem, nevertheless, the “synoptic” method has come to
refer 1o methods of scientific research and weather prediction as well.

1.26. In the view of the synoptic meteorologist, it is another essential feature of his method that he
has continually sought to classify s experience by selecting a limited number of “lump™ varnables or
indices to characterize the mdteorological state and behavior of the atmosphere.  As Charney (1949) points
out, this s done evidently in the hope of reducing the number of degrees of freedom, while providing an
inherently natural and adequate system of classification. The meteorologist has, for example, invented such
gestalt concepts as “high,”” “low,” “front’ and "jet stream™ to give a rough description of the mean state of
the atmosphere and has introduced the notions of “cyclogenesis,” “frontolysis,” “blocking action™ and the
like to describe its behavior.  Some of these fictions—for example, the “low”—have become so deeply in-
grained in the thinking of meteorologists that they are frequently spoken of as real physical entities, capable
of continued independent existence, but subject to their own peculiar laws of interaction.

1.27. The remaining aspect of the synoptic method consists in seeking to discover the laws governing
the behavior of these meteorological constructs, or to discover and establish prognostic relationships between
the “lump’ variables, which characterize the meteorological state of the atmosphere prior to one given in-
stant, and its state at some time in the future.  Although such relationships are often suggested by the
qualitative application of well-known physical principles, they most frequently emerge from the accumulated
experience of the practicing forecaster as empirical rules-of-thumb.

1.28.  From this point of view, the synoptic method contains nothing, aside from special techniques for
representing the state of the atmosphere, that is not already contained in essence in the methods of statistics
and mathematical physies.  If there is any real difference, it lies in the subjectivity with which either or
both of the two basic methods are applied.  In fact, through common usage. “synoptic’ has become more or
less synonymous with “empirical.”™  That 18 not to say, however, that the synoptic method is not perfectly
seientific, and useful in isolating significant relationships from a mass of extraneous detail.  The real point
is that it consists mainly in deseriptive analysis and classification of the recorded history of the atmosphere in
the past, and partly in the qualitative application of quantitative physical principles.  We shall confine
our attention, therefore, to the two methods outlined earlier.

1.29.  Resuming discussion of the two basic methods of attack, it is relevant to note that the statistical
and mathematical-physical statements of the prediction problem are, at least in a certain limited sense, quite
similar.  [tis implicit in the statements of both that the problem of weather prediction is essentially an initial
value problem.  In other words, whether the future state of the atmosphere is completely determined by its
state at any one instant, or whether the distribution of probabilities of several alternative events is fixed by
a single combination of variates, the burden of significance is placed ov the moment of latest information.
Morcover, althoug' the forecaster habitually takes recourse to data at a succession of moments to extrapolate
past behavior, he still has it in mind that the data at one time are actually sufficient.

1.30.  The choice of methods is not to be founded on similarities, however, but on basic differences.  In
this case the real distinction between them is that the statistical method is a probabilistic approach to the
problem, whereas the mathematical-physical method is essentially deterministic. To discuss the relative
merits and disadvantages of the two methods, therefore, one ix foreed to consider the nature and extent of
our positive knowledge of the atmosphere. This question is made difficult by the coexistence of probabilistic
and deterministic elements in comparable degree.

131, Although our observations of the state of the atmosphere are far from complete, it is safe to say
that we do possess kome positive knowledge of the physical principles which govern the behavior of fluids in

general and the atmosphere in particalar. [t would certainly be unreasonable to suppose that the meteoro-
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logical behavior of the atmosphere is any more mysterious and unaccountable, because of its large scale, than
the acoustic and aerodynamic properties of the very same medium. The latter have been deliberately chosen
as examples of atmospheric behavior to which mathematical-physical methods have already been applied
with great success. The atmosphere, in short, is a fluid which differs in no cssential respect from any other
fluid and is subject to the same general physical laws.

1.32  Accepting this point of view, it seems only reasonable to accord the forecasting problem the same
consideration that one would give to more commonplace problems—for example, that of betting on a game
of chance. Given the positive knowledge that the dice are loaded, one would have no hesitation in casting
probabilistic considerations to the winds and betting on the favored sides, even though their appearance is
not certain in every play. Similarly, if we have positive knowledge of the general principles that govern the
behavior of the atmosphere, it 18 logical and consistent with normal judgment to exploit that knowledge by
regarding the atmosphere as completely controlled by that strong element of determinism. In a manner of
speaking, the behavior of the atmosphere is heavily “loaded™ in favor of Newtonian physics.

1.33. It can still be argued that purely statistical methods might lead to results approaching positive
information. However, if one has any faith at all in the general validity of the laws of mechanics, he is
tempted to suspect that the most concise result of an exhaustive statistical study would simply show that the
hydrodynamical laws are almost certainly valid.

1.34. It is also arguable that the hydrodynamical equations, however applicable or well known they
are, may yield no directly verifiable information, because of the extreme mathematical difficulty of solving
and deriving observable consequences from them. Until recently, this has been a valid (and frequent)
objection to applying the methods of mathematical physics to the prediction problem. Because of the lack
of sufficiently powerful mcthods of mathematical analysis, the theoretical meteorologist has been forced to
make a number of concessions, primarily for the sake of convenience, and, more often than not, the special
assumptions introduced to facilitate solution have completely obscured the question of the validity of the
general equations. In any case, this objection refers to a fault of the mathematician and meteorologist, not
to a fault of the equations.

1.35. During the past few years, high-speed automatic computing machines have been developed
which are capable of performing a single multiplication, complete with the necessary transfer and storage
of information, within a matter of micro- or milli-seconds. Thus, for the first time, it appears economically
feasible to carry out the numerical integration of the complete hydrodynamical equations within a small
fraction of the human lifetime. Granting that it would probably provide greater insight into the innermost
nature of things to solve the equations by analytic methods and granting that one would really prefer, for
aesthetic reasons, to solve them in that way, the mathematical methods at present at our disposal are not
adequate to deal with the problem. Meanwhile it appears feasible to apply brute machine force to at least
some aspects of the problem of weather prediction, by integrating the hydrodynamical equations numerically.
It is probably safe to say that this fact alone has been a major factor in the recent rebirth of interest in the
problem of numerical weather prediction, and possibly in theoretical meteorology in general. A few meteorol-
ogists and mathematicians have gone so far as to envision a completely automatic weather-forecasting
machine, analogous to the Tide Machine, into which data will be fed directly and which inexorably and with
great exactitude will calculate out the entire future course of the atmosphere.

1.36. In view of the foregoing considerations of method, it appears mort reasonable to approach the
prediction problem from the standpoint of mathematical physics, rather than from the standpoint of statistics.
Before finally restating the problem, however, it is necessary to consider what shall be taken to constitute a

satisiactory solution to the prediction problem.
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1.37. Itis almost characteristic of statistical hypotheses that they consist of a large number of apparently
unrelated results. For this reason alone, statistical theories contribute little to our understanding of the
external physical world, if only in the objective sense that it is difficult to apprehend a great many relation-
ships simultaneously. A physical theory, on the other hand, usually consists of a relatively small number of
statements and is framed in mathematical terms so concise that the formal aspects of the theory can be
grasped simultaneously and as a whole. Partly for this reason, and possibly because statistical theories do
not satisfy our instincts for an impoeed order, it might be anticipated that no statistical theory will ever be
accepted as the final solution of the prediction problem. This is not to say that statistical theories are not
valid. They are simply not so satisfying.

1.38. Another question connected with the form of the final solution concerns ultimate accuracy or the
irreducible minimum of error. This point has some bearing on the extent to which the solution is made
determinate by the conditions of the prediction problem and was briefly touched on during the previous
discussion of observability of the initial state. It has also been discussed at some length by Schumann (1950)
in a recent pair of articles in Weather, in which he suggests that the difference between the apparent upper
limit on forecasting accuracy and the Laplacian ideal of complete determinism is due to something like the
Heisenberg uncertainty principle. Although it is certainly true that the ultimate accuracy of predictions
hinges on the observability of the “"true” state of a system, reference to the uncertainty principle is mis-
leading and has simply obscured the iasue. In the first place, it applies strictly only to a system whoee state
18 significantly altered by the mere act of measuring it, so that it is not applicable to the macroscopic behavior
of the atmosphere. Second, the difference between Heisenberg’s uncertainty and Laplace’s certainty is very
small in any case. The reason for elaborating on this seemingly irrelevant detail is that, as the d nsity of
initial data is indefinitely increased, the corresponding wultimate accuracy will probably approach a limit
which, for all intents and purposes, amounts to determined certainty. From this standpoint, it is not

inconsistent to apply an essentially deterministic method to the prediction problem.

THE PROBLEM RESTATED

1.39. Having discussed the difficulties and constraints on the general problem, and having touched
briefly on general questions of method and predictability, we are now in a position to justify the choice of
problems to be studied in the remainder of this paper. To state it brieflv, the problem is to predict the
pressure or mean horizontal circulation of the atmosphere, by integrating the equations of classical hydro-
dynamics (suitably modified if necessary) subject to given boundary and initial conditions. As specified
carlier, we shall confine our attention to the large-scale, sluwly moving disturbances which are apparently

associated with the more tangible aspects of weather.

2.00 HISTORICAL BACKGROUND AND FUNDAMENTAL DIFFICULTIES
OF THE PROBLEM

RICHARDSON'S EXPERIMENT

2.01. The problem of integrating the hydrodynamical equations to predict the meteorological stat. of
the atmosphere is far from new. As early as 1917 Richardson attempted to predict local pressure changes

by stepwise numerical integration. His method cunsisted in estimating all space derivatives as finite dif-
ferences between the initial values at various loc. ns, and in computing the instantaneous local time
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derivatives from the primitive hydrodynamical equations. The equations of motion, for example, express
the lccal variations of the velocity components in terms of space derivatives only, and the continuity equa-
tion gives the local variation of density. Next, regarding the instantaneous local time derivatives as finite
differences, Richardson simply extrapolated the variables a short time into the future to generate a new set of
initial values, whence the process could be repeated ad infinitum.

2.02. The results, as presented in Richardson’s “Numerical Weather Prediction” (1922), indicated
pressure changes one or two orders of magnitude greater than thoee actually observed. This discrepancy
was discouraging enough to cause widespread pessimism about the possibility of predicting the state of the
atmosphere by integrating the hydrodynamical equations numerically or by any other mathematical means.
Richardson’s experiment was quite successful, however, in demonstrating certain difficulties which are
inherent in his method in particular and are, to some extent, present in any method. It would have been

quite surprising, in fact, if the results of his experiment had turned out positive.

DIFFICULTIES INHERENT IN THE PHYSICAL SYSTEM

2.03. Aside from approximative errors in the equations, the possible sources of error may be lumped
under three main headings. First, a large source of error lies in the incompleteness and inaccuracy of the
initial data. Second, there may be some peculiarity of a physical system which makes the problem of pre-
dicting its behavior an inherently difficult one. If, for example, the system is very near the state of complete
mecchanical equilibrium at all times, then our estimate of its departure from equilibrium, based on incomplete
or inaccurate observations of its . tate, may contain errors as large as the true departures. Since the whole
problem of predicting the state of a system revolves around our ability to estimate its departures from equi-
librium, such innate characteristics of the physical system may conceal a large source of error. Finally,
even with the most accurate and complete observations of the state of the atmosphere and with the most well-
behaved physical system, small errors in the initial data may be magnified by the particular mathematical
method one chooses for solving the hydrodynamical equations.

2.04. The first of these sources of error, which is common to all methods, has already been discussed at
some length in Section 1.00. Althoughsuch errors cannot be completely removed, they can be minimized by
predicting the mean state of the atmosphere, integrated over an aggregate of points in the network of meteor-
ological observations, or at least by confining attention to disturbances whose characteristic dimension is
several times the distance between adjacent points in the network. The remaining sources of difficulty, on
the other hand, stem from circumstances over which there is more control, and there is some point to discuss-
ing them in detail. Although both of the latter sources of error have been previously discussed by Charney
(1949), some of the facts concerning their existence and true nature are sufficiently inobvious to bear repeti-
tion and further elaboration.

205. Itis afrequent complaint of the meteorologist that it is next to impossible to compute representa-
tive values of the local time deriv:itives, as given by the primitive hydrodynamical equations, in terms of
actually observed initial values. He observes, for example, that the nongeostrophic accelerations result
from a small imbalance between two large forces, the Coriolis and pressure forces, and that the error in esti-
mating either of those forces is therefore about as large as the true nongeostrophic momentum change.
Similarly, he observes that the local changes in density ate also given as small differences between individ-
ually large components of mass accumulation and, as a consequence, that the computed local change in

pressure i8 likewise extremely sensitive to small errors in the initial data. In cvery case, the local time



derivatives are given by the raw hydrodynamical equations as small differences between individually large
terms, whence the errors in estimating any one of the large terms—and the resulting errors in the computed
time derivatives—are generally of the same order of magnitude as the true values of the local time deriva-
tives. All of these difficulties, however, are simply different manifestations of the same essential fact.
Considered as the medium for propagating large-scale slowly moving disturbances, the atmosphere is always
and everywhere close to the state of complete mechanical equilibrium.

2.06. To illustrate this, let us consider some of the consequences of postulating that the pressure,
Coriolis and gravitational forces arc almost in equilibrium, i.e., that the atmosphere is very nerrly in geo-
strophic and hydrostatic balance. Ir other words, we are supposing that the acceleration terms in the

equations of motion
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are small in comparison with either of the remaining terms. This is stated in mathematical form in the

following approximate equations:
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The first equation carries the direct implication that the total horizontai divergence of momentum is actually
quite small, for it implies that A\"'p is almost a momentum stream function. However, the separate com-

ponents of momentum divergence in the two horizontal directions, which are reflected in the terms
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are, in general, quite large. Thus the difficulty of estimaung the horizontal momentum divergence stems
directly from the balance between the horizontal components of the pressure and Coriolic forces. The latter
is also responsible for the difficulty of computing the local time derivatives of the velocity components from
the equations of motion, because the accelerations resulting from the imbalance between those forces are
amall.

2.07. In much the same way, the almost complete balance between mechanical forces makes it difficult
to estimate the vertical compon« it of velocity. To demonstrate this, we make use of the continuity equation
and the condition for hydrostatic equilibrium, to obtain the following expression for the material derivative
of pressure

dp f"
— =V .Vp — V. pVd:.
de p gl P dz

An alternative expression can be found by combining the continuity equation with the first law of thermo-
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dynamics for adiabatic processes,
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Finally, by equating the two independent expressions for the total derivative of pressure, we obtain a formula

expressing the vertical component of velocity in terms of space derivatives only.

w=V,.-Vh—f V-de—x[p"V-Vpd:-*-ngp_'f VoV dzd-.
A (]

Viewed in the light of previous remarks, concerning the computability of the horizontal momentum diver.
gence, the first and third integrals are evidently small, but extremely sensitive to error. It is, of course, a
direct consequence of approximate Eq. (1) that the second integral ‘s small when the atmosphere is nearly in
geostrophic balance.  Finally, it follows that the vertical componert of velocity over flat terrain, is likewise
computed as the small difference between individually large terms.

2.08. To summarize the foregoing arguments, both the horizontal momentum divergence and the
vertical component of velocity are necessarily small in an atmosphere which is almost in mechanical equi-
librium. For the very reason that they are small, the errors incurred by computing them from the primitive
hydrodynamical equations are of the same general order of magnitude as the quantities themselves. The
above statements imply that the local time derivative of density and the resulting local variations of pres-
sure ar. also small, and that the computed values of those quantities are sensitive to small errors.

2.09. Viewing Richardson’s experiment in the light of these facts, it is almost inevitable that the local
time derivatives computed from the primitive equations should have contained large percentage errors, for
it is observed that the atmosphere (when considered in the large) is very close to a locally mair.tained state
of mechanical equilibrium. At first glance it might appear that this difficulty would be present in any
method of integrating the hydrodynamical equations, numerical or otherwise. As will be shown later,
however, this is fortunately not the case. In fact, those features of the atmosphere’s meteorological behavior
which make the prediction problem difficult are exactly those which truly characterize it.  Furthermore, the
very smallners of deviations from the state of complete mechanical equilibrium can be turmed to advantage
in specializing the general problem.

2.10. It is pertinent to note here that the dificulty might be obviated by inventing new physical
variables whose local time derivatives are independent of the magnitude of the external force. With respect
to those variables, the atmosphere would behave as if it were unaware that it is actually near the state of
mechanical cquilibrium.  The theorems of angular momentum conservation are particularly suggestive in

this connection.

DIFFICULTIES INHERENT IN MATHEMATICAL METHOD

2.11.  The third class of errors is of an entirely different nature, since it arises from the very method by
which one chooses to solve the hydrodynamical equations.  To demonstrate the reality of this purely mathe-
matical phenomenon, let us return to Richardson’s experiment.  Because it dealt with primitive equations
which were essentially unmodified, it is implicit in those equations that they possess solutions corresponding,
say, to sound waves. It can therefore be stated at the outset that, in order to integrate the complete equa-
tions numerically, one must at least be able to integrate the svstem of equations governing the propagation of
sound waves in that manner. [t is well ki.own, of course, that sound waves are governed by a system of

first-order equations of the following type
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These equations, together with the initial values of u and p, completely determine the solution at all times in
the future.
2.12. The application of Richardson's method to the solution of this system is quite straightforward.
Let us consider the values of u and p at points (iAx, jAt) in the (x, t) plane, spaced at regular intervals of Ar
in the t-direction and Ax apart in the x-direction (see Fig. 1). Since we are given the values u(idx, 0) and
plidx, 0) at some arbitrarily chosen time-origin, it is therefore possible to compute the values u(idx, jir
and p(iAx, jAt) at all later times from the following finite-difference equations
2pAx|ulidz, jAt] — ulidx, (j — DA} + At{p[(i + 1)ax. (j = 1)a1] = p[(i — DAx, (j — 1)at}} =0
2ax|plix, jar] — pliax, (j — 1At} + vpatlul(i + 1)Ax, (j — 1)ad — ul(i — Dax, (j — D)ar]} = 0.

These equations, which were obtained simply by replacing the differential quotients in Eqs. (2) and (3) with
the corresponding ratios of finite differences, are essentially recursion formulas. Setting j equal to one, for
example, these equations cnable us to calcuiate u(idx, At) and p(iAx, At) directly from the given initial values
u(idx,0) and p(idx, 0), whence the process can be repeated indefinitely.

2.13. In discussing the errors of this method, however, it is actually simpler to deal with an equivalent
systewn, in which only one of the variables appears explicitly. This is arrived at by cross-differentiating

Eqs. (2) and (3) to eliminate u, whence
/
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Since this equation is now of the second order with respect to time. both p and its local time derivative must
be known initially to determine the solution. According to the original conditions of the problem, the initial
values of p itself are known. The local time derivative of p is evidently given in terms of the initial values
of u by Eq. (3). Equation (4) is the familiar one-dimensional wave equation, a hyperbolic equation whose
properties and solutions have already been studied exhaustively. It is well known, for instance, that it~
solutions correspond to sound waves traveling at speeds = (ypp~')* in the a-direction.

2.14. Finite-difference methods for solving this and similar hyperbolic equations have been discussed
by Courant, Friedrichs and Lewy (1928). In much the same way as outlined earlier, they consider the values
of p at a network of discrete points, spaced Ax apart along the length-axis and At apart along the time-avis,
and develop a recursion formula corresponding to Eq. (4) in order to compute the values of p at all points
from its initial values. To summarize their results, they find that making the intervals Ax and At infinitesi-
mally small is not sufficient to insure that the approximate solution will converge on the exact solution.
Also, the finite interval of time At must always be chosen =qual to or less than the finite increment of leng th
Ax divided by the natural wave speed. Thus,

At < (ypo ') Ax.

If this condition is not satisfied, the computed wave solutions will grow to an indefinitely large amplitude.
The exact solution, on the other hand, indicates that the waves will actually be propagated without any
essential change in form.  Morcover, the equations are incapable of distinguishing between real and spurious
variations in the initial values, so that small errors can presumably be amplified to the point of completels
obscuring the true solution.  An elementary demonstration of such effects is given in Appendix 1.
2.15. The metcorological implications of this result are rather devastating. Since solutions corre-
nonding to sound waves are implicit in the unmodified primitive equations, and because the equations
themselves are incapable of distinguishing between an error in the initial data and a physically real dis-
turbance, the most direct and obvious form of the finite-difference method will amplify the “sound’ waves

until they finally obscure the large-scale, slowly moving disturbances that are of primary interest. In
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a manner of speaking, the noise level will rise so high that the weak meteorological signals will become
unintelligible.

2.16. With regard to straightforward numerical integration of the unmodified hydrodynamical equa-
tions, we are apparently faced with a trilemma, represented by the following three alternatives.  We must
either resign ourselves to committing considerable error or, second, ratisfy the Courant-Friedrichs-Lewy
condition for computational stability or, third, modify the basic method to ehiminate the rource of instability.

2.17. The first alternative, of course, is intolerable.  The second requires that the time intervals
separating successive stages of the integration must be less than the time it takes a sound wave to travel the
distance between two adjacent points in the space grid. It would be illusory to make the distance between
adjacent grid-points less than the distance between adjacent observation stations, but it is equally undesir-
able to lose what little resolving power does exist.  The distance between grid-points should be comparable,
therefore, with the distance between observation stations, i.e., on the order of a hundred miles, rather than
ten miles or a thousand.

2.18. 'This implies that the interval between successive stages of integration must be on the order of
ten minutes or less, and that the number of stages required to produce one 24:-hr prediction would be one
hundred or more. The amputations involved in one such prediction would be a staggering task, at least
an order of magnitude greater than can be undertaken with the facilities and resources available at present.
On economic grounds alone, the recond alternative is not satisfactory. Moreover, one instinctively feels
that the requirements for computational stability provide more time-resolution than is necessary to predict
the course of the slowly moving meteorological disturbances.

2.19.  With reference to the third alternative, it should be mentioned that there are methods, recently
developed by von Nenmann, for eliminating the source of error instability in the basic method of finite dif-
ferences. In general, these methods remove the erroms of simple extrapolation by “centering™ all differences
on one point and by attaching greater weight to some approximations than to others.  As might be expected,
however, the advantages of these methods are bought at a price, and give rise to other disadvantages and

difficulties, for example, that of inverting a matrix of large order, applying a vort of Green's function to the
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initial data, or possibly that of overstabilizing the solution  In summary, none of the three alternatives is

completely satisfactory.

DISCUSSION OF DIFFICULTIES WITH REFERENCE TO SPECIAL SYSTEMS

2.20. To point up the essential difficulties of the problem and t suggest a way out of them, we shall
congider a hydrodynamical syxtem §omewhat simpler to deal with than the atmosphere, but whose behavior
is in certain crucial respects quite similar. Let us temporarily suppose, for the sake of argument, that we
are interested in predicting the elevation of the ocean’s free surface. By way of orientation, this is equivalent
to predicting the pressure at some fixed level beneatlr the surface.  For simplicity, we shall also suppose that
the ocean is of uniform depth and that we are concerned only with small deviations from the state of rest.
Finally, to simplify matters further, it will be assumed that the flow yelocity depends only on the east-west
coordinate and time. This system has been studied by Sverdrup (1927), Roesby (1938) and others, and has
been used for purposes of analogy by Chamey (1949). The differential equations governing its motions are
well known. They are
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Viewing the motions of the system in the large, all of the difficultics that have been discussed previously must
be present in the problem of predicting its behavior by the most direct and obvious means, i.e., by numerically
integrating the primitive equations that govern it.

2.21. To prepare the way for later development, the eliminations will be carried out ir. two stages,
first by eliminating u to obtain two equations in h and v, and finally by eliminating v. By cross-differentiating
Egs. (5) and (6) and making use of Ey. (7), we obtain the vorticity equation
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Likewise, eliminating u between Eqs. (5) and (7), we arrive at an independent equation in h and v.
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In passing it might be noted that, if the carth were not rotating, ' would be zero and the motions would be
governed by the simple wave equation
3’ 3%h
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The solutions of this equation correspond to the “shallow-water” gravity waves traveling at speeds =+ (gH)*.
On the other hand, if the motions arc purely horizontal, the vorticity equation reduces to a telegrapher’s

equation, whoee solutions correspond to the long Rossby waves.
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The latter always travel toward the west (relative to the medium) at the speed Sa™ . Proceeding with the
de

eliminations, we now differentiate kq. (8) once more with respect to x and substitute for 3 from Eq. (9),
X

to obtain a single equat ~n in h.
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This equation i the basis for further discussion of the motions of the system.

2.22.  We turn next to the problem of estimating the relative orders of magnitude of each of the terms
in Eq. (11). Because the governing equation is linear, the motions corresponding to various types of solu-
tions coexist without interaction, whence it is permissible to consider each type of motion scparately.  Togive
a rough description of cach type, we now ascribe to it a charactenstic “half wavelength,” a measure of the
distance between successive pronounced maxima and minima: a characteristic “half period.” a measure of
the time interval between successive maxima and minima passing a fixed point: and, finally, a characteristic
“amplitude,” which measures the difference in height between adjacent pronounced maxima and minima.
Since the terms in Eq. (11) are only estimated to the correct order of magnitude, we may approximate all

derivatives by ratios of characteristic numbers.
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and, in general,
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Actually, it is simpler to compare estimates if they are expressed i terms of a characteristic “phase speed™
and a characteristic “double frequency,” defined by the “half wavelength™ and “half period™ as follows

c= LT f=T"

The relative magnitudes of the terms in Eq. (11) are displayed below, each estimate appearing beneath the

corresponding term in the equation.
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The state of motion is evidently characterized by the values of three nondimensional parameters, one of

which depends only on the properties of the medium and two of which depend on the tyvpe of motion in
question.

2.23.  We may distinguish two types of motion:, each characterized by an extreme value of one of the
free parameters. For example, if the characteristic frequency of the motion is much greater than the
frequency of the carth’s rotation, and if c is independent of f, then the last three terms of Eq. (11) are much
less than the tirst two.  In that case Eq. (11) reduces to the wave equation (kq. (10)). The phase speed of
the “shallow-water™ gravity waves is independent of their frequencey, so that the previously stated condition
on the phase speed is fulfilled a posteriori.  On the other hand, if the characteristic phase speed is much less
than the speed of “shallow -water™ waves, and whether ¢ depends on f or not, then the second term in Eq. (11
is much less than the first and the fourth is much less than the third.  In this case the governing equation

reduces to
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Fundamental solutions of this equation correspond to waves of the Rosshy ty pe, traveling toward the west
at the speed —B(a® + A%, )7

2.24. Let it now be supposed that the elevation of the ocean’s free surface represents the combined
effects of two distinct and superposable types of motion, one characterized by the fact that its frequency is
much larger than the frequency of the earth’s rotation, and the other by the fact that its phase speed is much
less than that of "“shallow.water™ gravity waves. Moreover, to strengthen the analogy between ocean and
atmosphere, we must imagine that the height amplitude of the slowly moving disturbance is considerably
greater than that of the high-frequenes disturbance, a situation which is rather unusual.  There are evidently
two ways to go about predicting the elevations of the sea surface in this case. The most direet method
would be to solve kgx. (51, (0) and (7) by stepwise numerical integration. subjeet to known initial conditions.
An exactly equivalent scheme is to deal with the two types of motion separatels . integrating the equ ®
that govern each one without reference to the other and later superposing the solutions. This is the | 1t
where the difficulty arises. Because the high-frequencey disturbances are really gravity waves, they are
governed by the hyperbolic wave equation (Eq. (10)) and, unless the Courant-Friedrichs-Lewy condition is
satisfied, the simple method of finite differences will amplify the computed gra- ity was e solutions to the point
that they will obscure the one which is really dominant.

2.25. There are two ways out of this difficulty.  First, Eq. (10) might be solved by some more stable
method, possibly by exact analytic methods.  Second. it might not be necessary to deal with the gravity
waves at all. Let us suppose that the initial values of the surface elevation have somehow been separated
into two superposable components, one due to the slowly moving disturbances and the other due to the
gravity wavee.  We now investigate the error incurred by applyving the equation for the flowly moving dis-
turbances to the total initial values of surface elesation, whether it is due to the Rossby iy pe of wave or to gravity
waves.  Evidently the only rource of error lies 10 the fact that the initial disturbances which are actually
manifestations of gravity waves will be propagated at speeds differing from the correet one by an amount
dependent on their wavelength and. in general. will be propagated too slowlv.  As speeified carlier. however.
the amplitude of the gravity waves is much less thar that of the slowly moving disturbances. whenee the
percentage error in applying the equation for Rossby type waves 1o the complete imtial conditions is not
very great.  This would be desirable for the very reason that the Rossby waves do travel so slowlv. Fyven
if it were necessary to satisfy some condition for computational stability. the required time resolution would
be much less. At this point it is important to note that the pressure amplitudes of sound and gravity waves
in the atmosphere are one or two orders of magnitude less than that of the large-scale. slowly moving weather
disturbances.

2.26. Although it is certanly improper to extend the ocean-atmosphere analogy to all aspeets of cach
system, it is interesting and perhaps legitimate to interpret certain of these results in the hieht of observed
facts about the atmosphere. 1t is observed that the large-scale disturbances in the nican low move very
slowly and, even more signnicant, generally move in only one direction relative to the medmme e toward
the west.*  The latter fact s very suggestive.  If these disturbances are governed by o pecal form of some
differential equation, similar to Eq. (11, itis quite clear that such an equation must be ol the fiirst order with
respect to time.  Referring to the previous estimates of the relative magnitudes of terms i ko (100t s

seen that the governing equation will contain terms that are no higher than the first oider with respeet 1o

* Speed of movement, as used here, refers to the phase speed or apeed of individaal extrema, and mu-t wot be dentibied with

the rate of energy propagation, which, through dispersion effects, can be much greater than the phare <peed
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time if and only if the phase speed is much less than the speed of gravity waves.  In extenso, therefore, it is
proposed that the essential fact——thv property of large-scale atmospheric disturbances which distinguishes
them from all other types of motion-—is not really that their scale is large nor that their frequency is small,
but that they move so slowly relative to the medium,

2.27. It has already been shown that introducing such information explicitly into the governing equa-
tion leads to an approximate equation from which solutions corresponding to certain types of motion are
excluded. In a manner of speaking. the high-frequency noise has been filtered out by making systematic
use of the approximations which characterize the large-scale disturbances.  Owing to their peculiar nature,
approximations of the type

c<L NS
will be called “filtering approximations,”™ after Charney (1948).

2.28.  Although the foregoing analysis provides a clear indication of the features which distinguish the
large-scale oceanic disturbances. itis difficult 10 see how this method can be extended to cover atmospheric
disturbances of finite amplitude and, in particular, how one can derive a single nonlinear equation which can
be subjected to dimensional analysis.  The difficulty lies in carrying out the climimations under such genera
conditions. A fact that is especially significant in this connection, and which was fimt pointed out by
Charney (1947). is that Eq. (12) could have been obtained by introducing the so-called “geostrophic ap-
proximation”

A~ gah Jdx

\

directly into the vorticity equation (Eq. (8)). This suggests that the “geostrophic approximation™ may he
equivalent to the “filtering approximation,” if itis applied only in the vorticity equation, Although it would
be difficult to demonstrate under more general conditions, it can be shown that this equivalence is valid in
the present case.  Approvimating the derivatives in Eq. (5) by ratios of characteristic numbers vields the
following estimates

du v

~ A, T! ~ AL
at ax

Morcover, Eq. (7) provides an independent relation between A, and {1,
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The relative magnitudes of the terms in Eq. (5) are displayed below, each estimate appearing beneath the

corresponding term of the equation.

ou \ oh
v
o £ dx

< ¢ )"’ L\ l
Cy g‘h

It therefore appears that. if the characteristic phase speed is much less than the speed of gravity waves, the

first term is much smaller than the third and. consequently, smaller than the second.  This impliec that the
winds (i.c., ocean currents) associated with the slowly moving Rosshy waves are typically geostrophic.
Although this result cannot be regarded as holding under all circumstances, st least it contains a clue as to
the pattern that a more general development should follow.  As will be shown later, the introduction of the
geostrophic approximation into the vorticity equation is suflicient to exclude the solutions corresponding to

high-speed sound and gravity waves.  The remaining question is whether or not it is more than sufficient
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2.29.  The results of this section will later be extended to apply to atmospheric disturbances, by develop.
ing a similar "scale” theory for the adiabatic flow of a compressible gas.  As before, the method of develop-
ment will consist first in eliminating all but one of the dependent variables (pressure) to obtain a single equa-
tion; second, in assigning characteristic numbers to deseribe each type of motion: third, in expressing
estimates of the relative magnitudes of the terms in the governing equation in terms of a minimum number
of nondimensional characteristic parameters: finally, in discovering what type of motion corresponds to an

extreme value of each of the characteristic parameters,

THE MODELS OF ROSSBY AND CHARNEY

2.30.  The assumptions adopted by Rossby (1939) to demonstrate the mathematical existenee of long
waves, have precisely the effect of “filtering out™ the sound and gravity waves.  Because he dealt with the
motion of a homogeneous and, by implication, incompressible fluid, the medium was incapable of propagating
sound waves. Secondly, Rossby assumed that the large-scale motions of the atmosphere are essentially
horizontal, whence there could exist no gravity waves. It is likewise clear that the hydrodynamical equa-
tions, when applied to the purely horizontal flow of a homogeneous nonviscous fluid. will have no solutions
corresponding to the excluded types of motion. By default, therefore, all that remain are the long Rossby
waves.

2.31.  Aside from the fact that they provide no very deep insight into the essential physical nature and
distinguishing features of large-scale atmospherie disturbances, the above assumptions are stated rather
baldly and without adequate justification.  Very considerable advances toward justifyving Rossby's end
result (if not his assumptions) and otherwise toward eircumventing the dificulties of the problem have heen
made in the past few vears by Charney (1948, 1949). Charney and Elassen (1949) and Charnev. Fjortoft
and von Neumann (1950).

2.32. In a manner similar to that outhned earlier. Charney (1948) has introduced the potions of
characteristic lengths, periods and amplitudes of the velocity, pressure and density disturbances. By ap-
proximating the derivatives in the unreduced primitive equations (rather than i a single reduced equation
as ratios of characteristic numbers, Charney has shown that it is typical of large-scale disturbances that the
vertical motions associated with them are small. that the winds are almost geostrophice, and that the atmos-
phere is very nearly in hydrostatic equibibrinm. To indicate how this information is to be incorporated into
the hydrodynamical equations and to provide a basis of concreteness for future discussions, the main points
of a development due to Charney and Eliassen (1949) will now be presented.

2.33.  To begin with, it is assumed that the horizontal aceelerations resulting from vertical motion are

negligible.  In that event. the vector equation of horizontal motion assumes the simple form

&)

F)Y YN ) ,
)'+\‘< >+l\><(s‘+>\)\ + o 'Tp =0, (13)
4 -

Most of the discussion will be centered around the vorticity equation, obtained by applyving the operator

CX () toEq. (13).

d : 2
_)'f+\'-\"§'+)\) + C+MNV-V 4 p7°Tp X Tp =0,
¢
We wow introduce the geostrophic approximation

AWV~ K Xp'vp

into the solenoidal term. and negleet ¢ (where it appears undifferentiated) in comparison with A,
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ot
p[a"-{-V-V(f-f-X,] + V-V AV Vp = 0.
Finally, combining terms according to the rules for partial differentiation of vectors,
d
oy M ATV =0, (14)

2.34. We have now reached a crucial point in the argument.  Equation (14) may be regarded as a
means of computing the local time derivative of vorticity, provided all other terms can be computed accu-
rately from observed initial values. It has already besn shown that the horizontal momentum divergence
associated with large-scale disturbances is necessarily and actually small.  However, owing to the fact that
it is to be computed as the small difference between individually large terms, it is subject to large percentage
errors. The conclusion is inescapable. It is actually better to set the horizontal momentum divergence
exactly equal to zero than it is to compute it directly from the initial data as defined.

2.35. It should be mentioned in passing that, because the horizontal momentum divergence of the large-
gcale flow is much smaller than the advective changes of angular momentum, the vertical cemponent of
absolute vorticity is essentially conserved, whence Rosshy's final conclusion is substantially correct.  More-
over, if the absolute vorticity is actually conserved, the local time derivative of vorticity is not given as the small
difference between large terms. The reasons for this will appear later.

2.36. Returning to the main theme of this development, it is still possible to form an accurate estimate
of the vorticity -generating effects of momentum divergence. To show this, Eq. (14) is integrated vertically

with respect to height from the ground surface to an infinite height above the earth.

Pa ! ©
f (‘(§'+>\)dp+)\gf V.-poVdz = 0. (15)
o dt A
An independent expression for the second integral can be obtained from the so-called “tendency equation™
a ©
(;:h = gosVp - Ch — g‘[ T oV d-. (16)

Finally, eliminating the integrated momentum divergence between Eqgs. (15) and (10)

Pl opn
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= 0. (17)
The degree to which absolute vorticity is not conserved is given. therefore, in the mean, in terms of quantities
that can be accurately computed.  One is tempted to conclude from this, as does Charney, that the tendency
cquation is not to be regarded as a means of computing the pressure tendency (Bjerknes and Holmboe
(1944)), but as a means of estimating the integrated effect of horizontal momentum divergence.

2.37.  Chamey and Eliassen next establish a correspondence between the motions of the real atmosphere
and those of a fictitious “equivalent-barotropic™ atmosphere, by assuming that the wind direction (though
not the wind speed) is independent of height. To be exact, they assume that the winds at all levels have the

same direction as the density-weighted mean wind V.

V=ApVix.y 1) (18)

PA
()= ph"'jo‘ () dp.

where the operator () is defined by



35

This restriction, together with several other minor approximations, makes it possible to invert the order of

differentiation and integration in the first term of Eq. (17).  We find, for example, that

t~A(p)T t=K vxV,

whence
PA 9 J Pa
f ( dp >~ f A dp,
0 ot Jt Jo
Pa _ [P
f A\ \';d,m«V- \"g'f 1% dp
0 0

and

PA ‘ [ fm ’
' ONdp ~ Bi A dp.
; dp ~ gi A dp

Integrating both sides of Eq. (18) with respect to p, between the limits 0 and p,, we also note that

‘/‘m’d
| Adp = p

Finally, the local and advective changes of absolute vorticity are collected to obtain a new equation, similar

in form to the unintegra‘ed vorticity equation, but referring to integrated values of the original dependent

variables.

-';i + AW VT 4+ B0 + NgRTIT,IV, - Th — Apy™

P, (19)
Evidently, Eq. (19) governs the motions of a fictitious two-dimensional atmesphere. in which the flow
velocity is the density-weighted vertical average of the winds observed in the real atmosphere.

2.38. Although it is not exactly permissible to do so, one is tempted to think of V as the actual wind at
some one height, and to conceive of Eq. (19) as applying to the horizontal motions within a surface of such
points. This surface, which is located at altitudes where the observed winds equal the vertically integrated
mean winds, is known as the “equivalent-barotropic level.” It is a matter of experience that it is a nearly
level surface and does not ascend or descend much from day to day. It is generally located somewhere
around the 500- or 600-mb level. roughly coinciding with the so-called “level of nondivergence.”

2.39. With this interpretation, Charney and Eliassen next apply Eq. (19) to horizontal motions at
the equivalent-barotropic level. At this point they introduce the “filtering approximation,” substituting
the geostrophic wind for the true wind, wherever it enters undifferentiated or wherever it is used to compute
vorticity.

V~Kxag'v: T~g\ v, (20)

This is permissible, of course, because the horizontal momentum divergence has been eliminated between the
vorticity and tendency equations, whence there is no further need to compute it.  Moreover, the information
that was lost in treating the divergence as an eliminant must be resupplied by introducing some sort of
stream function. Subject to one further restriction, specifying the connection between local pressure changes
at different levels, the meteorologically significant motions are found to be governed by a single equation
involving only one dependent variable—the height of a surface of constant pressure at the equivalent-baro-
tropic level. To eliminate surface pressure from Eq. (19) Chamey and Eliassen originally assumed that the
height tendency is the same at all levels, later remarking that it would be more reasonable to relate the

tendencies at the surface and at the equivalent-barotropic level by a factor of proportionality equal to the
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ratio of the wind speeds at those levels. Taken together with the hydrostatic condition, this assumption
requires that

aph dz
—~ A P——, 21
o > 8 (ps) po (21)

Inserting the relations expressed in Eqgs. (20) and (21) into Eq. (19), we finally obtain
9 o2 -143 2 9 13 —2 9z -2
5;Vz+g)\ AJ(:.V2)+35;—)\C» A(Ph)a';-i-gkcn A(pra)J(z, h) = 0. (22)

However aptly it may describe the behavior of large-scale pressure disturbances, kq. (22) is nonlinear and
must therefore be solved by numerical methods, as opposed to analytic methods.

2.40. In A Numerical Method for Predicting Perturbations,”” Chamey and Eliassen (1949) go on to
consider solutions of a linear equation related to Eq. (22). For the sake of simplicity, they further restrict
themselves to flow in which the vorticity is due mainly to the curvature of the streamlines, rather than to
shear acroes the flow. In that case, small deviations from uniform west-east flow are governed by the
following *“one-dimensional’™ perturbation equation

9’z
ox*at
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* dz dz
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Because we are primarily interested in the free oscillations of the atmosphere—i.c., the transient disturbances
—the term arising from vertical motion at the ground has been omitted. The latter at worst creates a forced
oscillation, to be superposed over the dominant free oscillations.

2.41. 1t should be noted that Eq. (23) is of the same general type as Eq. (12), whose solutions cor-
respond to Roesby waves in an ocean. In fact, it can be verified directly that Eq. (23) possesses no eolutions
corresponding to sound and gravity waves. The frequency equation for wave solutions has only one root,
corresponding to a dispersive system of waves traveling toward the east at speeds

B A?Ua® - g
= T ReAGy

This result is in good qualitative accord with the observed fact. It is probably safe to say that the nonlinear
Eq. (22) also has no solutions corresponding to sound and gravity waves, for it is unlikely that additional
continuous® solutions would be admitted by the sole reason of its nonlincarity. Retracing our way through
this development, it appears that the high-frequeacy disturbances have been "filtered out™ by imposing two
special conditions. First, sound wave solutions are evidently excluded by treating the atmosphere as if it
were exactly in hydrostatic equilibrium. In a manner of speaking, the pressure changes at different levels
are 8o rigidly coupled together that tl.ey can be brought about only by changes in the effective depth of the
atmosphere. Second, the external gravity waves have been excluded in the process of substituting geo-
strophic winds into the vorticity equation, a device which was discussed earlier at considerable length.
2.42, To review our position briefly, the development of Charney and Eliassen leads to a single govern-
ing equation that is free of high-frequency “noise,” i.e., those solutions which, aside from the analytical
difficulties involved, are awhward from the standpoint of solving the equation numerically. It appears,
therefore, that one of the fundamental difficultics, namely, that of satisfying an inconveniently strong condi-

tion for computational stability, has been evaded completely.

* Under certain conditions, the nonlinearity of equations does permit special solutions, such as shock waves. These, how-
ever, are enscntially discontinuous solutions.
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2.43. 1t should also be noted that the second major difficulty has been overcome during the course of
the development. Turning back to Eq. (19), we see that it expresses the local time derivative of the mean
vorticity in terms of quantities that can be computed accurately. in the sense that the local derivative is not
invariably given as the small difference between individually large terms. In principle, therefore, one can
predict the mean vorticity by extrapolating its instantaneous local change a short time into the future.
The remaining difficulty is the purely mathematical problem of reconstructing the velocity distribution from
a known distribution of vorticity, in order to regenerate the initial conditions.

2.44. In connection with the latter problem, it is worth noting that the velocity distribution is com-
pletely determined by the knowledge of both the vorticity and velocity divergen-e. As indicated earlier,
the horizontal momentum divergence associated with the large-scale disturbances is characteristically small,

owing to the fact that the winds are almost in geostrophic balance.

d d
= (pu) ~ — a—y (pv).

Integrating vertically from the ground surface (now assumed flat) to an infinite height, we find that
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According to the conditions of the problem, however, Vis very nearly perpendicular to Vp,, whence

ot ~ ;11
ax  dy
This relation implies the existence of a stream function ¥, such that
i~ - — and b~ 6_\1« .
dy ox

Since the vorticity of the mean flow can be predicted with fair accuracy from a conservation equation, we
may regard it as known at some time in the future. The problem of regenerating initial conditions is then

reduced to that of solving the system
K- vxXV="F@y)
v-V=0 or V=Kxw

where F(x, y) is the known distribution of vorticity. Combining these equations to obtain a single equation

in one unknown, we arrive at a well-known equation of the Poisson type.
Vi = Fx, y).

[t is interesting to note here that gh™'z plays the role of a stream function. This demonstrates the physical
ind mathematical equivalence of the condition of geostrophic balance and the almost complete compensation
yetween the separate components of momentum divergence. It also provides additional justification for
ntroducing the geostrophic wind into the vorticity equation.

2.45. From the foregoing treatment and from previous discussions of the filtering approximation, it
ippears that the development of a suitable prognostic equation—one which is free of major computational
ind analytical difficultiecs—should be centered around a vorticity equation in some form. Apart from

ristorical reasons, there is an obvious, but heretofore undiscussed, purpose in regarding the vorticity or

B



38

angular momentum as the fundamental variable. It is simply this: The pressure force, one of the two
external forces acting to bring about relative accelerations, is a potential vector. Tlius the equation which
results from applying the curl operator to the force equation is independent of the magnitude of the pressure
force, for the form of the vorticity equation remains unaltered by the addition of any other potential force
whatever. The physical interpretation of this fact is that, so far as its vorticity-generating processes are
concerned, the atmosphere behaves as if it were not actually near the state of complete mechanical equi-
librium. One should expect, therefore, that the difficulties due to quasi-geostrophic and quasi-hydrostatic
conditions would not be present in the vorticity equation.

2.46. Although the development of Charney and Eliassen appears sufficient to meet the fundamental
difficulties of constructing meteorologically significant solutions of the hydrodynamical equations, and
although it provides a pattern for further development, the treatment is still not general enough to insure
that the special restrictions which are sufficient to make the problem truly meteorological are altogether
necessary. In any case, there are several points at which the theory could bear generalization. In the first
place, no matter how small the vertical motions (associated with the large-scale disturbances) might be,
there is still some doubt that they might not be effective in producing substantial changes in vorticity by
advection from one level to another. In other words, although the motions themselves are small, the vertical
gradients of velocity and vorticity are frequently large. Apart from such major objections, there have been
introduced, as needed, a number of unstated minor approximations which although they probably do not
significantly affect the form and accuracy of the final result, are rather unpalatable and cast some doubt on
the general validity of the theory. Some of these approximations have entered at several points in the same
way, whence it is possible that they are compensating and actually unnecessary. In any event, it would be
desirable to postpone the introduction of epecial approximations until us late in the development as possible.

2.47. There are certain features of the Chamey-Eliassen development which it is desirable and perhaps
necessary to retain. For example, there are obvious advantages to be gained by dealing with the motion
of a fictitious “two-dimensional™ atmosphere which, at least in a mathematical sense, is equivalent to the
actual atmosphere. Aside from the convenience of doing so, there are also strong physical reasons for treat-
ing the problem in this way. To illustrate this, let us consider the behavior of an atmosphere in which no
energy is received from outside sources. As suggested earlier by Charney (1948), the behavior of large-
scale pressure disturbances in such an atmosphere is evidently governed by a pair of equations expressing the

conservation of entropy and potential vorticity,

d a4
C+r =] =0 24
d’[\f-f- ) az] (24)
dé
= 0, 25
di (25)

together with the conditions for geostrophic and hydrostatic equilibrium.  These may be regarded as two
independent equations in p and w. [If we attempt to deal with the three-dimensional motions in complete
generality, we shall be faced with two equally unsatisfactory alternatives.  Either the vertical component

of velocity must be computed from the equation

0\~ /a6 )
= — | — V.v8},
e=-(3) (-

or it must be eliminated between Eqgs. (24) and (25), in which it enters linearly.  Now, the troposphere is



actually ro near neutral static stability that the errors in estimating the vertical derivative of potential tem-
perature are of the same general order of magnitude as the derivative itself.  Considering the first alternative,
therefore, we conclude that the computations of 1w would be extremely sens'tive to small errors in estimating
the static stability. In the second case, the coefficient of the term of highest order would contain the static
stability as a factor, whence the solution of the pressure equation would also be quite sensitive to small errors
in estimating the vertical derivative of potential temperature from observed initial data. This suggests
that our knowledge of the state of the atmosphere is not sufficiently accurate to allow us to deal with its
three-dimensional motion in complete generality, and that the effects of vertical motion must be treated in a
highly implicit manner, without direct reference to the vertical motions themselves.  What is significant is
that this can be accomplished by integrating out the vertical coordinate, in much the same way as Charney
and Eliassen have done.

2.48.  ‘The remainder of this report deals with an attempt to generalize the theory of large-scale pressure
disturbances in the atmosphere, following a scheme of development very similar in broad outline to that of
Charney and Eliassen. In general, and insofar as 1t is feasible, special assumptions and approximations will
be postponed until as late in the development as possible, so that one can see more clearly what they really
entail.  We shall then discuss the relative merits and disadvantages of several methods for solving the
prognostic equation, finally presenting an improved method for solving the “two-dimensional™ vorticity
equation. The theory is supported by a comparison of actually observed pressure changes with the cor-
responding predicted changes, based on solutions of the two-dimensional linearized vorticity equation.

2.49. Before undertaking the development of a prognostic equation, the problem of classifying the
various kinds of atmospheric motion will be considered, with a view to isolating those features of the large-
scale slowly moving disturbances which distinguish them from all other types. As mentioned earlier,
Charney (1948) has developed a “scale theory™ to deal with exactly the latter problem, and has succeeded
in demonstrating the mutual equivalence of the filtering approximation for large-scale motions with several
manifestations of quasi-equilibrium conditions.  However, owing to the fact that he has introduced char-
acteristic numbers into the unreduced primitive equations, his method is incapable of simultaneously reveal-
ing the approximations which characterize every type of motisn.  We therefore proceed directly to the
development of a somewhat different scale theory, designed along the same general lines as the one discussed

earlier in this section.

3.00 A SCALE THEORY AND THE NATURE OF THE FILTERING APPROXIMATIONS

3.01. The first step in the development of the scale theory, as outlined in the preceding section, is to
¢liminate all but one of the dependent variables between the hydrodynamical equations, later introducing
characteristic time and length scales to describe cach type of motion.  We therefore start with the Eulerian

equations of motion and continuity

‘2 + KXV + 5% =0 (26)
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taken together with a suitable energy equation. We shall suppose that no energy is being added to the ays-
tem, whence the thermodynamic processes are adiabatic.
df
=0 (29)
dt

where 6 = p‘p'l and x = CyCp~ .

It should also be noted that the complete vertical equation of motion has been replaced by the hydrostatic
equation (Eq. (27)) at the very outset.

3.02.  The two major assumptions implicit in the above equations deserve some comment.  To assume
that no energy is being supplied from external sources is simply to accept the existence of an initial distribu-
tion of energy. without regard to the manner in which 1t was established, and to describe the processes by
which that energy 1s adiabatically redistributed. By the same token, this restriction prevents us from
penetrating to “first canses™ or to the mechanism by which disturbances are originated. At first glance,
therefore, it might appear that the assumpiion of “no added energy™ would not permit the development of
“new " disturbances.  However, Kuo (1949) has shown that the latent instability of a locally undicturbed
state is sufficient to bring about development of large-scale disturbances after they have been initiated.
In view of this fact, and because the changes of eddy energy involved are so tremendous, it seems unlikely
that all- or even 2 major part—of the energy of a developing disturbance is derived from external sources-
i.e., from the initial impulses of energy required to set it off. It seems probable, rather, that most of the
kinetic energy .of the disturbance is derived from an already established distribution of energy. This, of
course, really begs the question, for the energy from external sources is certainly instrumental in establishing
an inherently unstable state.  The remaining question is how fast external cources of energy bring about
changes in the configuration of flow on a very large scale.  Itis actually observed that the str cture of the
mean or general circulation does not change markedly from week to week, whereas new disturbances quite
frequently develop in the course of a day or two. 1t therefore seems reasonable to suppose that the rapid
development of disturbances is due mainly to the adiabatic adjustment of a distribution of energy already
existing.  For this reason, and because disturbing influences are always present, it is probably sufficient to
assume that the thermodynamic processes are adiabatic, if one is concerned with predicting the course of
events over only a few days.

3.03. Having stipulated that no energy is being received from outside sources, it is only consistent to
require that kinetie and potential energy not be degraded into molecular motion through the action of dissi-
pative forees.  Otherwise, of course, the atmosphere would slowly run down until all its energy were trans-
formed into heat.  Accordingly, the forces due to molecular viscosity have been omitted from the equations
of motion.  Thev are quite small, in fact, compared with the observed pressure and gravitational forces.
This is not to say, however, that the Reynolds stresses due to disturbances on a scale smaller than the mesh
size of the observing network are also negligible.  In estimating the effect of small-scale ¢ " ly stresses, two
points must be considered. The first, which has already been discussed, is that the energy of disturbances
of various scales generally decreases with decreasing scale.  Second, attention will be confined to a vertically
integrated mean value of velocity.  Because the energy of very small scale disturbances s apparently con-
centrated in a rather shallow boundary laver, such disturbances make only a negligible contribution to the
eddy stresses of the mean wind.  Eddy stresses are therefore omitted from the equations of motion, which

e e
are now assumed to apply “in the large.
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A QUASI-LAGRANGIAN COORDINATE SYSTEM

3.04. With the foregoing rationalization, we return to the classical equations of hydrodynamics. To
simplify the problem of carrying out the eliminations, we shall next develop differentiation formulas for a
coordinate system which appears to be the most convenient and natural to the problem. Because the poten-
tial temperature (or entropy) is conserved, it is natural to regard it as a Lagrangian coordinate identifying a
material surface. Morcover, the hydrostatic equation introduces a fundamental asymmetry among the
space coordinates, in that dependence on the vertical coordinate is different from dependence on either of
the horizontal coordinates. The vector equation of horizontal motion is, of course, independent of the
horizontal coordinate system. This suggests that we might adopt 6 as an independent variable to represent
the vertical coordinate, regarding the height z of an isentropic surface as a dependent variable.  This leads
to a variant of the quari-Lagrangian coordinate systems first proposed by Starr (1945), in which one of the
coordinates is Lagrangian and the rest are Eulenan.

3.05. Applying the partial differentiation formulas for a change of independent variable, the derivatives

of any dependent variable ¢ taken with respect to the old coordinates (x, y, =, t) become, with respect to the

(o). -G, + () G)
ax/.  \ax/o ' \o8 /) \ox/,
d d¢ d
CRERC
ay/. dy/e a0
.-G
at/,
() -GG
3/ \oo/ \o:
The subscripts indicate which variable has been held fixed in the process of differentiation. The total

d ad d¢ df
._¢.=(..df) +v.vo¢+_¢k.
0

new coordinates (x,y, 8, t),

derivative then assumes the form

dt \at 0 dt

According to our assumption, however, the processes are adiabatic, whence the inaterial derivative takes on

the simple “two-dimensional” form

d¢
<5:)0 + V- Voo (30)

o _
dt

Similarly, we express the horizontal vector gradient in terms of the new coordinates.
d¢é
Vip = Vo + » V.

In particular, introducing the condition for hydrostatic equilibrium, the horizontal v cctor gradient of pressure

is given by

ap\[dz dz
= L — )8 = —_ = I
Vep = VYop + <az> (ao) b= Vep — g T v (31)



42

Moreover, making use of the definition of the slope of an isentropic surface in the x and y directions, Eq. (31)

reduces to
V,p = Vop + ng,z.

It must be re-emphasized that the dependent variable = is now the height of an isentropic surface. Since p
is a function of 8 and p,
p~'V.p = 6p7 Vp + gVsz
=0(1 — x)"'Vep' ™" + gV
Volgz + 6(1 — )~'p' 7. (32)

This expression shows that the acceleration due to the pressure foree is a potential veetor, i.e., that the integral
of its tangential component, taken around a closed curve in an isentropic surface, vanishes identically.
3.06. To complete the preliminary development, we also express the horizontal divergence in terme of

the new coordinates.  Applyir.g the differentiation formulas to the horizontal components of velocity,

oV
V=9V v (33)

I'he total divergence. however. also containg the term dw 3z, In terms of the new variables,

dz
w = (:3!-)9 + V.U

Jw a8 d Jd=
- = + V . Va.'.
dz dzdf0L\dt/y

AT o]
T ozlde\as) 98 %

whence, by direct differentiation,

d <| az) av ob o
= — n— —_ - -V,
dt a0 a0 (34)
Adding Eqs. (33) and (34), the total divergence takes the simple form
dw d Jz
T, V4+— =%V “{In—}: 3;
TV, ( " ao) L

The equation of continuity (Eq. (28)) can be written as

d dw
v, -V =
7 (Inp) +9,-V + o 0

which, with a substitution from kq. (35), reduces to

d(l az->+v V=0
d\" P 3 ! o (36)

Since all differentiations with respect to v, y and ¢ with = held fixed have now been expressed in terms of those
with 6 held fixed, the subscripts will be dropped

3.07. To summarize the results of the preceding development, we shall simply list the new hydro-
dynamical equations, expressing all derivatives as differentiations with respect 1o the quasi-Lagrangian

coordinates and expanding total derivatives as the sum of local and advective derivatives.
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5;%] +V UV 4+ KXN + Vgz+6(1 —x)"'p!'™*] =0 (37)
(.o . "_B) V=
o (ln 60) +V V(ln o5 +V-V=90 (38)
)
(1= 07'p!™ =~ lgz + 60 = )7'p' ] = 0. (39)

llquation (37) was obtained by substituting Eq. (32) into Eq. (26), the vector equation of horizontal motion.
Equation (38) combines Eqs. (27) and (36) «ud Eq. (39) was obtained by introducing the definition of 8
into the hydrostatic equation (27). Since the vector equation of Forizontal motion actually consists of two
independent acalar equations, kqs. (37), (38) and (39) constitute a complete system of equations involving
the derivatives of the four dependent variables u, v, p and :.

3.08. The new equations are similar in form to those that would be obtained by omitting the vertical
advection terms from the original Eulerian equations. In a manner of speaking., therefore—because
the vertical component of velocity does not appear explicitly—the quasi-Lagrangian equations refer to
a kind of “two-dimensional” motion. The effects of vertical motion are evidently implicit in the peculiar

coordinate system we have chosen. At any rate, the vertical component of velocity has been eliminated

effectively from all the equations.

THE PERTURBATION EQUATION FOR SURFACE PRESSURE

3.09. The remaining eliminations will be simplified by considering small deviations from the state of
rest, in which the undisturbed values of p and z are necessarily independent of x, y and t.  If the amplitude
of the disturbance is chosen small enough, the nonlinear advective derivatives become neglig 1le in com-
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